Tap the blue circles to see an explanation.
$$ \begin{aligned}4(n-3)+2(n+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4n-12+2n+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6n-8\end{aligned} $$ | |
① | Multiply $ \color{blue}{4} $ by $ \left( n-3\right) $ $$ \color{blue}{4} \cdot \left( n-3\right) = 4n-12 $$Multiply $ \color{blue}{2} $ by $ \left( n+2\right) $ $$ \color{blue}{2} \cdot \left( n+2\right) = 2n+4 $$ |
② | Combine like terms: $$ \color{blue}{4n} \color{red}{-12} + \color{blue}{2n} + \color{red}{4} = \color{blue}{6n} \color{red}{-8} $$ |