Tap the blue circles to see an explanation.
$$ \begin{aligned}4\cdot(2-3x)(x^2-2x+10)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(8-12x)(x^2-2x+10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x^2-16x+80-12x^3+24x^2-120x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-12x^3+32x^2-136x+80\end{aligned} $$ | |
① | Multiply $ \color{blue}{4} $ by $ \left( 2-3x\right) $ $$ \color{blue}{4} \cdot \left( 2-3x\right) = 8-12x $$ |
② | Multiply each term of $ \left( \color{blue}{8-12x}\right) $ by each term in $ \left( x^2-2x+10\right) $. $$ \left( \color{blue}{8-12x}\right) \cdot \left( x^2-2x+10\right) = 8x^2-16x+80-12x^3+24x^2-120x $$ |
③ | Combine like terms: $$ \color{blue}{8x^2} \color{red}{-16x} +80-12x^3+ \color{blue}{24x^2} \color{red}{-120x} = -12x^3+ \color{blue}{32x^2} \color{red}{-136x} +80 $$ |