Tap the blue circles to see an explanation.
$$ \begin{aligned}4\cdot(1-x\cdot2)-3(x\cdot2-3x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4\cdot(1-x\cdot2)-3(-x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4-8x-(-3x-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4-8x+3x+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-5x+10\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{2x} \color{blue}{-3x} -2 = \color{blue}{-x} -2 $$ |
② | Multiply $ \color{blue}{4} $ by $ \left( 1-2x\right) $ $$ \color{blue}{4} \cdot \left( 1-2x\right) = 4-8x $$Multiply $ \color{blue}{3} $ by $ \left( -x-2\right) $ $$ \color{blue}{3} \cdot \left( -x-2\right) = -3x-6 $$ |
③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( -3x-6 \right) = 3x+6 $$ |
④ | Combine like terms: $$ \color{blue}{4} \color{red}{-8x} + \color{red}{3x} + \color{blue}{6} = \color{red}{-5x} + \color{blue}{10} $$ |