Tap the blue circles to see an explanation.
$$ \begin{aligned}3x-2(x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x-(2x+8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x-2x-8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x-8\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( x+4\right) $ $$ \color{blue}{2} \cdot \left( x+4\right) = 2x+8 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x+8 \right) = -2x-8 $$ |
③ | Combine like terms: $$ \color{blue}{3x} \color{blue}{-2x} -8 = \color{blue}{x} -8 $$ |