Tap the blue circles to see an explanation.
$$ \begin{aligned}3x^3+x+2x^3-4x^2+14y-2(y+x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5x^3-4x^2+x+14y-2(y+x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^3-4x^2+x+14y-(2y+2x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}5x^3-4x^2+x+14y-2y-2x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}5x^3-4x^2-x+12y\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{3x^3} +x+ \color{blue}{2x^3} -4x^2+14y = \color{blue}{5x^3} -4x^2+x+14y $$ |
② | Multiply $ \color{blue}{2} $ by $ \left( y+x\right) $ $$ \color{blue}{2} \cdot \left( y+x\right) = 2y+2x $$ |
③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2y+2x \right) = -2y-2x $$ |
④ | Combine like terms: $$ 5x^3-4x^2+ \color{blue}{x} + \color{red}{14y} \color{red}{-2y} \color{blue}{-2x} = 5x^3-4x^2 \color{blue}{-x} + \color{red}{12y} $$ |