Tap the blue circles to see an explanation.
$$ \begin{aligned}3x^2-5x^3-x(2x^2+4x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^2-5x^3-(2x^3+4x^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^2-5x^3-2x^3-4x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-7x^3-x^2\end{aligned} $$ | |
① | Multiply $ \color{blue}{x} $ by $ \left( 2x^2+4x\right) $ $$ \color{blue}{x} \cdot \left( 2x^2+4x\right) = 2x^3+4x^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x^3+4x^2 \right) = -2x^3-4x^2 $$ |
③ | Combine like terms: $$ \color{blue}{3x^2} \color{red}{-5x^3} \color{red}{-2x^3} \color{blue}{-4x^2} = \color{red}{-7x^3} \color{blue}{-x^2} $$ |