Tap the blue circles to see an explanation.
$$ \begin{aligned}3 \cdot \frac{x}{x^2+5x+6}-2\frac{x}{x^2+8x-16}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3x}{x^2+5x+6}-\frac{2x}{x^2+8x-16} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^3+14x^2-60x}{x^4+13x^3+30x^2-32x-96}\end{aligned} $$ | |
① | Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{x}{x^2+5x+6} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{x}{x^2+5x+6} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 1 \cdot \left( x^2+5x+6 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x }{ x^2+5x+6 } \end{aligned} $$ |
② | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{x}{x^2+8x-16} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{x}{x^2+8x-16} \xlongequal{\text{Step 2}} \frac{ 2 \cdot x }{ 1 \cdot \left( x^2+8x-16 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x }{ x^2+8x-16 } \end{aligned} $$ |
③ | To subtract raitonal expressions, both fractions must have the same denominator. |