Tap the blue circles to see an explanation.
$$ \begin{aligned}3x(x+5)+x(2x-7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^2+15x+2x^2-7x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^2+8x\end{aligned} $$ | |
① | Multiply $ \color{blue}{3x} $ by $ \left( x+5\right) $ $$ \color{blue}{3x} \cdot \left( x+5\right) = 3x^2+15x $$Multiply $ \color{blue}{x} $ by $ \left( 2x-7\right) $ $$ \color{blue}{x} \cdot \left( 2x-7\right) = 2x^2-7x $$ |
② | Combine like terms: $$ \color{blue}{3x^2} + \color{red}{15x} + \color{blue}{2x^2} \color{red}{-7x} = \color{blue}{5x^2} + \color{red}{8x} $$ |