Tap the blue circles to see an explanation.
$$ \begin{aligned}3x(2x+1)-2\cdot(3-x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x^2+3x-(6-2x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x^2+3x-6+2x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6x^2+5x-6\end{aligned} $$ | |
① | Multiply $ \color{blue}{3x} $ by $ \left( 2x+1\right) $ $$ \color{blue}{3x} \cdot \left( 2x+1\right) = 6x^2+3x $$Multiply $ \color{blue}{2} $ by $ \left( 3-x\right) $ $$ \color{blue}{2} \cdot \left( 3-x\right) = 6-2x $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 6-2x \right) = -6+2x $$ |
③ | Combine like terms: $$ 6x^2+ \color{blue}{3x} -6+ \color{blue}{2x} = 6x^2+ \color{blue}{5x} -6 $$ |