Tap the blue circles to see an explanation.
$$ \begin{aligned}3x(2x-5)(x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(6x^2-15x)(x+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x^3+18x^2-15x^2-45x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6x^3+3x^2-45x\end{aligned} $$ | |
① | Multiply $ \color{blue}{3x} $ by $ \left( 2x-5\right) $ $$ \color{blue}{3x} \cdot \left( 2x-5\right) = 6x^2-15x $$ |
② | Multiply each term of $ \left( \color{blue}{6x^2-15x}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{6x^2-15x}\right) \cdot \left( x+3\right) = 6x^3+18x^2-15x^2-45x $$ |
③ | Combine like terms: $$ 6x^3+ \color{blue}{18x^2} \color{blue}{-15x^2} -45x = 6x^3+ \color{blue}{3x^2} -45x $$ |