Tap the blue circles to see an explanation.
$$ \begin{aligned}3x(2x-3)(3x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(6x^2-9x)(3x+4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}18x^3+24x^2-27x^2-36x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}18x^3-3x^2-36x\end{aligned} $$ | |
① | Multiply $ \color{blue}{3x} $ by $ \left( 2x-3\right) $ $$ \color{blue}{3x} \cdot \left( 2x-3\right) = 6x^2-9x $$ |
② | Multiply each term of $ \left( \color{blue}{6x^2-9x}\right) $ by each term in $ \left( 3x+4\right) $. $$ \left( \color{blue}{6x^2-9x}\right) \cdot \left( 3x+4\right) = 18x^3+24x^2-27x^2-36x $$ |
③ | Combine like terms: $$ 18x^3+ \color{blue}{24x^2} \color{blue}{-27x^2} -36x = 18x^3 \color{blue}{-3x^2} -36x $$ |