Tap the blue circles to see an explanation.
$$ \begin{aligned}3(x+5)-(x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x+15-(x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x+15-x+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x+20\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( x+5\right) $ $$ \color{blue}{3} \cdot \left( x+5\right) = 3x+15 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( x-5 \right) = -x+5 $$ |
③ | Combine like terms: $$ \color{blue}{3x} + \color{red}{15} \color{blue}{-x} + \color{red}{5} = \color{blue}{2x} + \color{red}{20} $$ |