Tap the blue circles to see an explanation.
$$ \begin{aligned}3(x+4)-4x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x+12-4x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-x+12\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( x+4\right) $ $$ \color{blue}{3} \cdot \left( x+4\right) = 3x+12 $$ |
② | Combine like terms: $$ \color{blue}{3x} +12 \color{blue}{-4x} = \color{blue}{-x} +12 $$ |