Tap the blue circles to see an explanation.
$$ \begin{aligned}3(x+2)\cdot2+5(x+2)-5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x+6)\cdot2+5x+10-5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x+12+5x+10-5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}11x+22-5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}11x+17\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( x+2\right) $ $$ \color{blue}{3} \cdot \left( x+2\right) = 3x+6 $$Multiply $ \color{blue}{5} $ by $ \left( x+2\right) $ $$ \color{blue}{5} \cdot \left( x+2\right) = 5x+10 $$ |
② | $$ \left( \color{blue}{3x+6}\right) \cdot 2 = 6x+12 $$ |
③ | Combine like terms: $$ \color{blue}{6x} + \color{red}{12} + \color{blue}{5x} + \color{red}{10} = \color{blue}{11x} + \color{red}{22} $$ |
④ | Combine like terms: $$ 11x+ \color{blue}{22} \color{blue}{-5} = 11x+ \color{blue}{17} $$ |