Tap the blue circles to see an explanation.
$$ \begin{aligned}3(x+2)(x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x+6)(x+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^2+9x+6x+18 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}3x^2+15x+18\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( x+2\right) $ $$ \color{blue}{3} \cdot \left( x+2\right) = 3x+6 $$ |
② | Multiply each term of $ \left( \color{blue}{3x+6}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{3x+6}\right) \cdot \left( x+3\right) = 3x^2+9x+6x+18 $$ |
③ | Combine like terms: $$ 3x^2+ \color{blue}{9x} + \color{blue}{6x} +18 = 3x^2+ \color{blue}{15x} +18 $$ |