Tap the blue circles to see an explanation.
$$ \begin{aligned}3(x-2)^2-1& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3(x^2-4x+4)-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^2-12x+12-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}3x^2-12x+11\end{aligned} $$ | |
① | Find $ \left(x-2\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(x-2\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 2 + \color{red}{2^2} = x^2-4x+4\end{aligned} $$ |
② | Multiply $ \color{blue}{3} $ by $ \left( x^2-4x+4\right) $ $$ \color{blue}{3} \cdot \left( x^2-4x+4\right) = 3x^2-12x+12 $$ |
③ | Combine like terms: $$ 3x^2-12x+ \color{blue}{12} \color{blue}{-1} = 3x^2-12x+ \color{blue}{11} $$ |