Tap the blue circles to see an explanation.
$$ \begin{aligned}3(x-1)(m^2z-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x-3)(m^2z-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3m^2xz-3x-3m^2z+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}3m^2xz-3m^2z-3x+3\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( x-1\right) $ $$ \color{blue}{3} \cdot \left( x-1\right) = 3x-3 $$ |
② | Multiply each term of $ \left( \color{blue}{3x-3}\right) $ by each term in $ \left( m^2z-1\right) $. $$ \left( \color{blue}{3x-3}\right) \cdot \left( m^2z-1\right) = 3m^2xz-3x-3m^2z+3 $$ |
③ | Combine like terms: $$ 3m^2xz-3m^2z-3x+3 = 3m^2xz-3m^2z-3x+3 $$ |