Tap the blue circles to see an explanation.
$$ \begin{aligned}3(x-1)-4(x+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x-3-(4x+8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x-3-4x-8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-x-11\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( x-1\right) $ $$ \color{blue}{3} \cdot \left( x-1\right) = 3x-3 $$Multiply $ \color{blue}{4} $ by $ \left( x+2\right) $ $$ \color{blue}{4} \cdot \left( x+2\right) = 4x+8 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 4x+8 \right) = -4x-8 $$ |
③ | Combine like terms: $$ \color{blue}{3x} \color{red}{-3} \color{blue}{-4x} \color{red}{-8} = \color{blue}{-x} \color{red}{-11} $$ |