Tap the blue circles to see an explanation.
$$ \begin{aligned}3\cdot(4-d)+2(d-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}12-3d+2d-10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-d+2\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( 4-d\right) $ $$ \color{blue}{3} \cdot \left( 4-d\right) = 12-3d $$Multiply $ \color{blue}{2} $ by $ \left( d-5\right) $ $$ \color{blue}{2} \cdot \left( d-5\right) = 2d-10 $$ |
② | Combine like terms: $$ \color{blue}{12} \color{red}{-3d} + \color{red}{2d} \color{blue}{-10} = \color{red}{-d} + \color{blue}{2} $$ |