Tap the blue circles to see an explanation.
$$ \begin{aligned}3(2x-5)+2(2x+5)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3(2x-5)+2(4x^2+20x+25) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x-15+8x^2+40x+50 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}8x^2+46x+35\end{aligned} $$ | |
① | Find $ \left(2x+5\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2x } $ and $ B = \color{red}{ 5 }$. $$ \begin{aligned}\left(2x+5\right)^2 = \color{blue}{\left( 2x \right)^2} +2 \cdot 2x \cdot 5 + \color{red}{5^2} = 4x^2+20x+25\end{aligned} $$ |
② | Multiply $ \color{blue}{3} $ by $ \left( 2x-5\right) $ $$ \color{blue}{3} \cdot \left( 2x-5\right) = 6x-15 $$Multiply $ \color{blue}{2} $ by $ \left( 4x^2+20x+25\right) $ $$ \color{blue}{2} \cdot \left( 4x^2+20x+25\right) = 8x^2+40x+50 $$ |
③ | Combine like terms: $$ \color{blue}{6x} \color{red}{-15} +8x^2+ \color{blue}{40x} + \color{red}{50} = 8x^2+ \color{blue}{46x} + \color{red}{35} $$ |