Tap the blue circles to see an explanation.
$$ \begin{aligned}2y(y-3)+4(y-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2y^2-6y+4y-12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2y^2-2y-12\end{aligned} $$ | |
① | Multiply $ \color{blue}{2y} $ by $ \left( y-3\right) $ $$ \color{blue}{2y} \cdot \left( y-3\right) = 2y^2-6y $$Multiply $ \color{blue}{4} $ by $ \left( y-3\right) $ $$ \color{blue}{4} \cdot \left( y-3\right) = 4y-12 $$ |
② | Combine like terms: $$ 2y^2 \color{blue}{-6y} + \color{blue}{4y} -12 = 2y^2 \color{blue}{-2y} -12 $$ |