Tap the blue circles to see an explanation.
$$ \begin{aligned}2x-3y-(4y+x)+x-2y& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x-3y-4y-x+x-2y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x-7y+x-2y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x-9y\end{aligned} $$ | |
① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 4y+x \right) = -4y-x $$ |
② | Combine like terms: $$ \color{blue}{2x} \color{red}{-3y} \color{red}{-4y} \color{blue}{-x} = \color{blue}{x} \color{red}{-7y} $$ |
③ | Combine like terms: $$ \color{blue}{x} \color{red}{-7y} + \color{blue}{x} \color{red}{-2y} = \color{blue}{2x} \color{red}{-9y} $$ |