Tap the blue circles to see an explanation.
$$ \begin{aligned}2x(2x+5x)-(12x+x^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x\cdot7x-(12x+x^2) \xlongequal{ } \\[1 em] & \xlongequal{ }14x^2-(12x+x^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}14x^2-12x-x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}13x^2-12x\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{2x} + \color{blue}{5x} = \color{blue}{7x} $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 12x+x^2 \right) = -12x-x^2 $$ |
③ | Combine like terms: $$ \color{blue}{14x^2} -12x \color{blue}{-x^2} = \color{blue}{13x^2} -12x $$ |