Tap the blue circles to see an explanation.
$$ \begin{aligned}2x(3y-(5x-(7y-6x)))& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x(3y-(5x-7y+6x)) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x(3y-(11x-7y)) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x(3y-11x+7y) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2x(-11x+10y) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-22x^2+20xy\end{aligned} $$ | |
① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 7y-6x \right) = -7y+6x $$ |
② | Combine like terms: $$ \color{blue}{5x} -7y+ \color{blue}{6x} = \color{blue}{11x} -7y $$ |
③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 11x-7y \right) = -11x+7y $$ |
④ | Combine like terms: $$ \color{blue}{3y} -11x+ \color{blue}{7y} = -11x+ \color{blue}{10y} $$ |
⑤ | Multiply $ \color{blue}{2x} $ by $ \left( -11x+10y\right) $ $$ \color{blue}{2x} \cdot \left( -11x+10y\right) = -22x^2+20xy $$ |