Tap the blue circles to see an explanation.
$$ \begin{aligned}2x(3x^2+4)-3x^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x^3+8x-3x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x^3-3x^2+8x\end{aligned} $$ | |
① | Multiply $ \color{blue}{2x} $ by $ \left( 3x^2+4\right) $ $$ \color{blue}{2x} \cdot \left( 3x^2+4\right) = 6x^3+8x $$ |
② | Combine like terms: $$ 6x^3-3x^2+8x = 6x^3-3x^2+8x $$ |