Tap the blue circles to see an explanation.
$$ \begin{aligned}2x(3^2+4)-3x^2& \xlongequal{ }2x\cdot(9+4)-3x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x\cdot13-3x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}26x-3x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-3x^2+26x\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{9} + \color{blue}{4} = \color{blue}{13} $$ |
② | $$ 2 x \cdot 13 = 26 x $$ |
③ | Combine like terms: $$ -3x^2+26x = -3x^2+26x $$ |