Tap the blue circles to see an explanation.
$$ \begin{aligned}2a(3a+1)-(3a+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6a^2+2a-(3a+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6a^2+2a-3a-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6a^2-a-1\end{aligned} $$ | |
① | Multiply $ \color{blue}{2a} $ by $ \left( 3a+1\right) $ $$ \color{blue}{2a} \cdot \left( 3a+1\right) = 6a^2+2a $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3a+1 \right) = -3a-1 $$ |
③ | Combine like terms: $$ 6a^2+ \color{blue}{2a} \color{blue}{-3a} -1 = 6a^2 \color{blue}{-a} -1 $$ |