Tap the blue circles to see an explanation.
$$ \begin{aligned}24m^2\frac{n}{6}mn^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{24m^2n}{6}mn^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{24m^3n}{6}n^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{24m^3n^3}{6}\end{aligned} $$ | |
① | Step 1: Write $ 24m^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 24m^2 \cdot \frac{n}{6} & \xlongequal{\text{Step 1}} \frac{24m^2}{\color{red}{1}} \cdot \frac{n}{6} \xlongequal{\text{Step 2}} \frac{ 24m^2 \cdot n }{ 1 \cdot 6 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 24m^2n }{ 6 } \end{aligned} $$ |
② | Step 1: Write $ m $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{24m^2n}{6} \cdot m & \xlongequal{\text{Step 1}} \frac{24m^2n}{6} \cdot \frac{m}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 24m^2n \cdot m }{ 6 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 24m^3n }{ 6 } \end{aligned} $$ |
③ | Step 1: Write $ n^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{24m^3n}{6} \cdot n^2 & \xlongequal{\text{Step 1}} \frac{24m^3n}{6} \cdot \frac{n^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 24m^3n \cdot n^2 }{ 6 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 24m^3n^3 }{ 6 } \end{aligned} $$ |