Tap the blue circles to see an explanation.
$$ \begin{aligned}2(x+y)(x+y+1)(x+y-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x+2y)(x+y+1)(x+y-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(2x^2+2xy+2x+2xy+2y^2+2y)(x+y-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(2x^2+4xy+2y^2+2x+2y)(x+y-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}2x^3+6x^2y+6xy^2+2y^3-2x-2y\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( x+y\right) $ $$ \color{blue}{2} \cdot \left( x+y\right) = 2x+2y $$ |
② | Multiply each term of $ \left( \color{blue}{2x+2y}\right) $ by each term in $ \left( x+y+1\right) $. $$ \left( \color{blue}{2x+2y}\right) \cdot \left( x+y+1\right) = 2x^2+2xy+2x+2xy+2y^2+2y $$ |
③ | Combine like terms: $$ 2x^2+ \color{blue}{2xy} +2x+ \color{blue}{2xy} +2y^2+2y = 2x^2+ \color{blue}{4xy} +2y^2+2x+2y $$ |
④ | Multiply each term of $ \left( \color{blue}{2x^2+4xy+2y^2+2x+2y}\right) $ by each term in $ \left( x+y-1\right) $. $$ \left( \color{blue}{2x^2+4xy+2y^2+2x+2y}\right) \cdot \left( x+y-1\right) = \\ = 2x^3+2x^2y -\cancel{2x^2}+4x^2y+4xy^2-4xy+2xy^2+2y^3 -\cancel{2y^2}+ \cancel{2x^2}+2xy-2x+2xy+ \cancel{2y^2}-2y $$ |
⑤ | Combine like terms: $$ 2x^3+ \color{blue}{2x^2y} \, \color{red}{ -\cancel{2x^2}} \,+ \color{blue}{4x^2y} + \color{orange}{4xy^2} \color{blue}{-4xy} + \color{orange}{2xy^2} +2y^3 \, \color{red}{ -\cancel{2y^2}} \,+ \, \color{red}{ \cancel{2x^2}} \,+ \color{orange}{2xy} -2x+ \color{orange}{2xy} + \, \color{red}{ \cancel{2y^2}} \,-2y = 2x^3+ \color{blue}{6x^2y} + \color{orange}{6xy^2} +2y^3-2x-2y $$ |