Tap the blue circles to see an explanation.
$$ \begin{aligned}2(x-1)^2(x+1)^2(3x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2(x^2-2x+1)(x^2+2x+1)(3x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(2x^2-4x+2)(x^2+2x+1)(3x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(2x^4-4x^2+2)(3x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}6x^5-2x^4-12x^3+4x^2+6x-2\end{aligned} $$ | |
① | Find $ \left(x-1\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x-1\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 1 + \color{red}{1^2} = x^2-2x+1\end{aligned} $$Find $ \left(x+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x+1\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 1 + \color{red}{1^2} = x^2+2x+1\end{aligned} $$ |
② | Multiply $ \color{blue}{2} $ by $ \left( x^2-2x+1\right) $ $$ \color{blue}{2} \cdot \left( x^2-2x+1\right) = 2x^2-4x+2 $$ |
③ | Multiply each term of $ \left( \color{blue}{2x^2-4x+2}\right) $ by each term in $ \left( x^2+2x+1\right) $. $$ \left( \color{blue}{2x^2-4x+2}\right) \cdot \left( x^2+2x+1\right) = \\ = 2x^4+ \cancel{4x^3}+2x^2 -\cancel{4x^3}-8x^2 -\cancel{4x}+2x^2+ \cancel{4x}+2 $$ |
④ | Combine like terms: $$ 2x^4+ \, \color{blue}{ \cancel{4x^3}} \,+ \color{green}{2x^2} \, \color{blue}{ -\cancel{4x^3}} \, \color{orange}{-8x^2} \, \color{blue}{ -\cancel{4x}} \,+ \color{orange}{2x^2} + \, \color{blue}{ \cancel{4x}} \,+2 = 2x^4 \color{orange}{-4x^2} +2 $$ |
⑤ | Multiply each term of $ \left( \color{blue}{2x^4-4x^2+2}\right) $ by each term in $ \left( 3x-1\right) $. $$ \left( \color{blue}{2x^4-4x^2+2}\right) \cdot \left( 3x-1\right) = 6x^5-2x^4-12x^3+4x^2+6x-2 $$ |