Tap the blue circles to see an explanation.
$$ \begin{aligned}2(x-4)-3(x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x-8-(3x-15) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x-8-3x+15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-x+7\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( x-4\right) $ $$ \color{blue}{2} \cdot \left( x-4\right) = 2x-8 $$Multiply $ \color{blue}{3} $ by $ \left( x-5\right) $ $$ \color{blue}{3} \cdot \left( x-5\right) = 3x-15 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3x-15 \right) = -3x+15 $$ |
③ | Combine like terms: $$ \color{blue}{2x} \color{red}{-8} \color{blue}{-3x} + \color{red}{15} = \color{blue}{-x} + \color{red}{7} $$ |