Tap the blue circles to see an explanation.
$$ \begin{aligned}2(x^2-3x)-3x(x-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^2-6x-(3x^2-12x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^2-6x-3x^2+12x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-x^2+6x\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( x^2-3x\right) $ $$ \color{blue}{2} \cdot \left( x^2-3x\right) = 2x^2-6x $$Multiply $ \color{blue}{3x} $ by $ \left( x-4\right) $ $$ \color{blue}{3x} \cdot \left( x-4\right) = 3x^2-12x $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3x^2-12x \right) = -3x^2+12x $$ |
③ | Combine like terms: $$ \color{blue}{2x^2} \color{red}{-6x} \color{blue}{-3x^2} + \color{red}{12x} = \color{blue}{-x^2} + \color{red}{6x} $$ |