Tap the blue circles to see an explanation.
$$ \begin{aligned}2(x^2-4x)-3(x+4x^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^2-8x-(3x+12x^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^2-8x-3x-12x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-10x^2-11x\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( x^2-4x\right) $ $$ \color{blue}{2} \cdot \left( x^2-4x\right) = 2x^2-8x $$Multiply $ \color{blue}{3} $ by $ \left( x+4x^2\right) $ $$ \color{blue}{3} \cdot \left( x+4x^2\right) = 3x+12x^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3x+12x^2 \right) = -3x-12x^2 $$ |
③ | Combine like terms: $$ \color{blue}{2x^2} \color{red}{-8x} \color{red}{-3x} \color{blue}{-12x^2} = \color{blue}{-10x^2} \color{red}{-11x} $$ |