Tap the blue circles to see an explanation.
$$ \begin{aligned}2(p+3)-(p+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2p+6-(p+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2p+6-p-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}p+4\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( p+3\right) $ $$ \color{blue}{2} \cdot \left( p+3\right) = 2p+6 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( p+2 \right) = -p-2 $$ |
③ | Combine like terms: $$ \color{blue}{2p} + \color{red}{6} \color{blue}{-p} \color{red}{-2} = \color{blue}{p} + \color{red}{4} $$ |