Tap the blue circles to see an explanation.
$$ \begin{aligned}2(p+3)-6(p-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2p+6-(6p-30) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2p+6-6p+30 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-4p+36\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( p+3\right) $ $$ \color{blue}{2} \cdot \left( p+3\right) = 2p+6 $$Multiply $ \color{blue}{6} $ by $ \left( p-5\right) $ $$ \color{blue}{6} \cdot \left( p-5\right) = 6p-30 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 6p-30 \right) = -6p+30 $$ |
③ | Combine like terms: $$ \color{blue}{2p} + \color{red}{6} \color{blue}{-6p} + \color{red}{30} = \color{blue}{-4p} + \color{red}{36} $$ |