Tap the blue circles to see an explanation.
$$ \begin{aligned}2(4x+1)-3(x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8x+2-(3x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x+2-3x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}5x+5\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( 4x+1\right) $ $$ \color{blue}{2} \cdot \left( 4x+1\right) = 8x+2 $$Multiply $ \color{blue}{3} $ by $ \left( x-1\right) $ $$ \color{blue}{3} \cdot \left( x-1\right) = 3x-3 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3x-3 \right) = -3x+3 $$ |
③ | Combine like terms: $$ \color{blue}{8x} + \color{red}{2} \color{blue}{-3x} + \color{red}{3} = \color{blue}{5x} + \color{red}{5} $$ |