Tap the blue circles to see an explanation.
$$ \begin{aligned}2(3x-4)-4\cdot(5-x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x-8-(20-4x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x-8-20+4x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}10x-28\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( 3x-4\right) $ $$ \color{blue}{2} \cdot \left( 3x-4\right) = 6x-8 $$Multiply $ \color{blue}{4} $ by $ \left( 5-x\right) $ $$ \color{blue}{4} \cdot \left( 5-x\right) = 20-4x $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 20-4x \right) = -20+4x $$ |
③ | Combine like terms: $$ \color{blue}{6x} \color{red}{-8} \color{red}{-20} + \color{blue}{4x} = \color{blue}{10x} \color{red}{-28} $$ |