Tap the blue circles to see an explanation.
$$ \begin{aligned}2(3x-2)+4(5x-1)-(3x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x-4+20x-4-(3x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}26x-8-(3x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}26x-8-3x-5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}23x-13\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( 3x-2\right) $ $$ \color{blue}{2} \cdot \left( 3x-2\right) = 6x-4 $$Multiply $ \color{blue}{4} $ by $ \left( 5x-1\right) $ $$ \color{blue}{4} \cdot \left( 5x-1\right) = 20x-4 $$ |
② | Combine like terms: $$ \color{blue}{6x} \color{red}{-4} + \color{blue}{20x} \color{red}{-4} = \color{blue}{26x} \color{red}{-8} $$ |
③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3x+5 \right) = -3x-5 $$ |
④ | Combine like terms: $$ \color{blue}{26x} \color{red}{-8} \color{blue}{-3x} \color{red}{-5} = \color{blue}{23x} \color{red}{-13} $$ |