Tap the blue circles to see an explanation.
$$ \begin{aligned}2 \cdot \frac{2t^3+9t^2+28t+84}{12(2t+1)}-\frac{(t^2+6t+8)^2}{4(2t+1)^2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2 \cdot \frac{2t^3+9t^2+28t+84}{24t+12}-\frac{(t^2+6t+8)^2}{4(4t^2+4t+1)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{4t^3+18t^2+56t+168}{24t+12}-\frac{t^4+12t^3+52t^2+96t+64}{16t^2+16t+4} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2t^3+9t^2+28t+84}{12t+6}-\frac{t^4+12t^3+52t^2+96t+64}{16t^2+16t+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{5t^4+4t^3-26t^2+104t-24}{48t^2+48t+12}\end{aligned} $$ | |
① | Multiply $ \color{blue}{12} $ by $ \left( 2t+1\right) $ $$ \color{blue}{12} \cdot \left( 2t+1\right) = 24t+12 $$ |
② | Find $ \left(2t+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2t } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(2t+1\right)^2 = \color{blue}{\left( 2t \right)^2} +2 \cdot 2t \cdot 1 + \color{red}{1^2} = 4t^2+4t+1\end{aligned} $$ |
③ | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{2t^3+9t^2+28t+84}{24t+12} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{2t^3+9t^2+28t+84}{24t+12} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 2 \cdot \left( 2t^3+9t^2+28t+84 \right) }{ 1 \cdot \left( 24t+12 \right) } \xlongequal{\text{Step 3}} \frac{ 4t^3+18t^2+56t+168 }{ 24t+12 } \end{aligned} $$ |
④ | Multiply each term of $ \left( \color{blue}{t^2+6t+8}\right) $ by each term in $ \left( t^2+6t+8\right) $. $$ \left( \color{blue}{t^2+6t+8}\right) \cdot \left( t^2+6t+8\right) = t^4+6t^3+8t^2+6t^3+36t^2+48t+8t^2+48t+64 $$ |
⑤ | Combine like terms: $$ t^4+ \color{blue}{6t^3} + \color{red}{8t^2} + \color{blue}{6t^3} + \color{green}{36t^2} + \color{orange}{48t} + \color{green}{8t^2} + \color{orange}{48t} +64 = \\ = t^4+ \color{blue}{12t^3} + \color{green}{52t^2} + \color{orange}{96t} +64 $$ |
⑥ | Multiply $ \color{blue}{4} $ by $ \left( 4t^2+4t+1\right) $ $$ \color{blue}{4} \cdot \left( 4t^2+4t+1\right) = 16t^2+16t+4 $$ |
⑦ | To subtract raitonal expressions, both fractions must have the same denominator. |