Tap the blue circles to see an explanation.
$$ \begin{aligned}18 \cdot \frac{q^4}{p^5}\cdot27\frac{p^9}{q^7}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{18q^4}{p^5}\frac{27p^9}{q^7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{486p^9q^4}{p^5q^7}\end{aligned} $$ | |
① | Step 1: Write $ 18 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 18 \cdot \frac{q^4}{p^5} & \xlongequal{\text{Step 1}} \frac{18}{\color{red}{1}} \cdot \frac{q^4}{p^5} \xlongequal{\text{Step 2}} \frac{ 18 \cdot q^4 }{ 1 \cdot p^5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 18q^4 }{ p^5 } \end{aligned} $$ |
② | Step 1: Write $ 27 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 27 \cdot \frac{p^9}{q^7} & \xlongequal{\text{Step 1}} \frac{27}{\color{red}{1}} \cdot \frac{p^9}{q^7} \xlongequal{\text{Step 2}} \frac{ 27 \cdot p^9 }{ 1 \cdot q^7 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 27p^9 }{ q^7 } \end{aligned} $$ |
③ | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{18q^4}{p^5} \cdot \frac{27p^9}{q^7} & \xlongequal{\text{Step 1}} \frac{ 18q^4 \cdot 27p^9 }{ p^5 \cdot q^7 } \xlongequal{\text{Step 2}} \frac{ 486p^9q^4 }{ p^5q^7 } \end{aligned} $$ |