Tap the blue circles to see an explanation.
$$ \begin{aligned}17p+8p^3-4-5(p^3-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}17p+8p^3-4-(5p^3-10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}17p+8p^3-4-5p^3+10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}3p^3+17p+6\end{aligned} $$ | |
① | Multiply $ \color{blue}{5} $ by $ \left( p^3-2\right) $ $$ \color{blue}{5} \cdot \left( p^3-2\right) = 5p^3-10 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 5p^3-10 \right) = -5p^3+10 $$ |
③ | Combine like terms: $$ 17p+ \color{blue}{8p^3} \color{red}{-4} \color{blue}{-5p^3} + \color{red}{10} = \color{blue}{3p^3} +17p+ \color{red}{6} $$ |