Tap the blue circles to see an explanation.
$$ \begin{aligned}15-8(x+2)+3(x+2)x+(-\frac{11}{15})(x+2)x(x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}15-8x-16+(3x+6)x+(-\frac{11}{15})(x+2)x(x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8x-1+(3x+6)x+(-\frac{11}{15})(x+2)x(x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-8x-1+3x^2+6x+(-\frac{11}{15})(x+2)x(x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}3x^2-2x-1+(-\frac{11}{15})(x+2)x(x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}3x^2-2x-1+\frac{-11x-22}{15}x(x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}3x^2-2x-1+\frac{-11x^2-22x}{15}(x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}3x^2-2x-1+\frac{-11x^3-11x^2+22x}{15} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{-11x^3+34x^2-8x-15}{15}\end{aligned} $$ | |
① | Multiply $ \color{blue}{-8} $ by $ \left( x+2\right) $ $$ \color{blue}{-8} \cdot \left( x+2\right) = -8x-16 $$Multiply $ \color{blue}{3} $ by $ \left( x+2\right) $ $$ \color{blue}{3} \cdot \left( x+2\right) = 3x+6 $$ |
② | Combine like terms: $$ \color{blue}{15} -8x \color{blue}{-16} = -8x \color{blue}{-1} $$ |
③ | $$ \left( \color{blue}{3x+6}\right) \cdot x = 3x^2+6x $$ |
④ | Combine like terms: $$ \color{blue}{-8x} -1+3x^2+ \color{blue}{6x} = 3x^2 \color{blue}{-2x} -1 $$ |
⑤ | Step 1: Write $ x+2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-11}{15} \cdot x+2 & \xlongequal{\text{Step 1}} \frac{-11}{15} \cdot \frac{x+2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -11 \right) \cdot \left( x+2 \right) }{ 15 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -11x-22 }{ 15 } \end{aligned} $$ |
⑥ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-11x-22}{15} \cdot x & \xlongequal{\text{Step 1}} \frac{-11x-22}{15} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -11x-22 \right) \cdot x }{ 15 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -11x^2-22x }{ 15 } \end{aligned} $$ |
⑦ | Step 1: Write $ x-1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-11x^2-22x}{15} \cdot x-1 & \xlongequal{\text{Step 1}} \frac{-11x^2-22x}{15} \cdot \frac{x-1}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -11x^2-22x \right) \cdot \left( x-1 \right) }{ 15 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -11x^3+11x^2-22x^2+22x }{ 15 } = \frac{-11x^3-11x^2+22x}{15} \end{aligned} $$ |
⑧ | Step 1: Write $ 3x^2-2x-1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |