Tap the blue circles to see an explanation.
$$ \begin{aligned}14x-3x^2-2(6x^2+6x^3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}14x-3x^2-(12x^2+12x^3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}14x-3x^2-12x^2-12x^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-12x^3-15x^2+14x\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( 6x^2+6x^3\right) $ $$ \color{blue}{2} \cdot \left( 6x^2+6x^3\right) = 12x^2+12x^3 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 12x^2+12x^3 \right) = -12x^2-12x^3 $$ |
③ | Combine like terms: $$ 14x \color{blue}{-3x^2} \color{blue}{-12x^2} -12x^3 = -12x^3 \color{blue}{-15x^2} +14x $$ |