Tap the blue circles to see an explanation.
$$ \begin{aligned}14 \cdot \frac{q^4}{10}q^4\cdot0& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{14q^4}{10}q^4\cdot0 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14q^8}{10}\cdot0 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{0}{10} \xlongequal{ } \\[1 em] & \xlongequal{ }0\end{aligned} $$ | |
① | Step 1: Write $ 14 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 14 \cdot \frac{q^4}{10} & \xlongequal{\text{Step 1}} \frac{14}{\color{red}{1}} \cdot \frac{q^4}{10} \xlongequal{\text{Step 2}} \frac{ 14 \cdot q^4 }{ 1 \cdot 10 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 14q^4 }{ 10 } \end{aligned} $$ |
② | Step 1: Write $ q^4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{14q^4}{10} \cdot q^4 & \xlongequal{\text{Step 1}} \frac{14q^4}{10} \cdot \frac{q^4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 14q^4 \cdot q^4 }{ 10 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 14q^8 }{ 10 } \end{aligned} $$ |
③ | Step 1: Write $ 0 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{14q^8}{10} \cdot 0 & \xlongequal{\text{Step 1}} \frac{14q^8}{10} \cdot \frac{0}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 14q^8 \cdot 0 }{ 10 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 0q^8 }{ 10 } \end{aligned} $$ |