Tap the blue circles to see an explanation.
$$ \begin{aligned}12-2(3x-2)(3x+2)-(2x+5)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}12-2(3x-2)(3x+2)-(4x^2+20x+25) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12-(6x-4)(3x+2)-(4x^2+20x+25) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}12-(18x^2+12x-12x-8)-(4x^2+20x+25) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}12-(18x^2-8)-(4x^2+20x+25) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}12-18x^2+8-(4x^2+20x+25) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}-18x^2+20-(4x^2+20x+25) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}-18x^2+20-4x^2-20x-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}-22x^2-20x-5\end{aligned} $$ | |
① | Find $ \left(2x+5\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2x } $ and $ B = \color{red}{ 5 }$. $$ \begin{aligned}\left(2x+5\right)^2 = \color{blue}{\left( 2x \right)^2} +2 \cdot 2x \cdot 5 + \color{red}{5^2} = 4x^2+20x+25\end{aligned} $$ |
② | Multiply $ \color{blue}{2} $ by $ \left( 3x-2\right) $ $$ \color{blue}{2} \cdot \left( 3x-2\right) = 6x-4 $$ |
③ | Multiply each term of $ \left( \color{blue}{6x-4}\right) $ by each term in $ \left( 3x+2\right) $. $$ \left( \color{blue}{6x-4}\right) \cdot \left( 3x+2\right) = 18x^2+ \cancel{12x} -\cancel{12x}-8 $$ |
④ | Combine like terms: $$ 18x^2+ \, \color{blue}{ \cancel{12x}} \, \, \color{blue}{ -\cancel{12x}} \,-8 = 18x^2-8 $$ |
⑤ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 18x^2-8 \right) = -18x^2+8 $$ |
⑥ | Combine like terms: $$ \color{blue}{12} -18x^2+ \color{blue}{8} = -18x^2+ \color{blue}{20} $$ |
⑦ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 4x^2+20x+25 \right) = -4x^2-20x-25 $$ |
⑧ | Combine like terms: $$ \color{blue}{-18x^2} + \color{red}{20} \color{blue}{-4x^2} -20x \color{red}{-25} = \color{blue}{-22x^2} -20x \color{red}{-5} $$ |