Tap the blue circles to see an explanation.
$$ \begin{aligned}12(x-6)^2-200& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}12(x^2-12x+36)-200 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12x^2-144x+432-200 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}12x^2-144x+232\end{aligned} $$ | |
① | Find $ \left(x-6\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 6 }$. $$ \begin{aligned}\left(x-6\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 6 + \color{red}{6^2} = x^2-12x+36\end{aligned} $$ |
② | Multiply $ \color{blue}{12} $ by $ \left( x^2-12x+36\right) $ $$ \color{blue}{12} \cdot \left( x^2-12x+36\right) = 12x^2-144x+432 $$ |
③ | Combine like terms: $$ 12x^2-144x+ \color{blue}{432} \color{blue}{-200} = 12x^2-144x+ \color{blue}{232} $$ |