Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{8}(x^2+2)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{8}(x^6+6x^4+12x^2+8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^6+6x^4+12x^2+8}{8}\end{aligned} $$ | |
① | Find $ \left(x^2+2\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = x^2 $ and $ B = 2 $. $$ \left(x^2+2\right)^3 = \left( x^2 \right)^3+3 \cdot \left( x^2 \right)^2 \cdot 2 + 3 \cdot x^2 \cdot 2^2+2^3 = x^6+6x^4+12x^2+8 $$ |
② | Step 1: Write $ x^6+6x^4+12x^2+8 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{8} \cdot x^6+6x^4+12x^2+8 & \xlongequal{\text{Step 1}} \frac{1}{8} \cdot \frac{x^6+6x^4+12x^2+8}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( x^6+6x^4+12x^2+8 \right) }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^6+6x^4+12x^2+8 }{ 8 } \end{aligned} $$ |