Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{4}((3+3i)^4-3^4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{1}{4}(81i^4+324i^3+486i^2+324i+81-81) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{1}{4}(81i^4+324i^3+486i^2+324i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{1}{4}(81-324i-486+324i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{1}{4}\cdot(-405) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}-\frac{405}{4}\end{aligned} $$ | |
① | $$ (3+3i)^4 = (3+3i)^2 \cdot (3+3i)^2 $$ |
② | Find $ \left(3+3i\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 3 } $ and $ B = \color{red}{ 3i }$. $$ \begin{aligned}\left(3+3i\right)^2 = \color{blue}{3^2} +2 \cdot 3 \cdot 3i + \color{red}{\left( 3i \right)^2} = 9+18i+9i^2\end{aligned} $$ |
③ | Multiply each term of $ \left( \color{blue}{9+18i+9i^2}\right) $ by each term in $ \left( 9+18i+9i^2\right) $. $$ \left( \color{blue}{9+18i+9i^2}\right) \cdot \left( 9+18i+9i^2\right) = \\ = 81+162i+81i^2+162i+324i^2+162i^3+81i^2+162i^3+81i^4 $$ |
④ | Combine like terms: $$ 81+ \color{blue}{162i} + \color{red}{81i^2} + \color{blue}{162i} + \color{green}{324i^2} + \color{orange}{162i^3} + \color{green}{81i^2} + \color{orange}{162i^3} +81i^4 = \\ = 81i^4+ \color{orange}{324i^3} + \color{green}{486i^2} + \color{blue}{324i} +81 $$162i^3+162i^3=324i^3 |
⑤ | Combine like terms: $$ 81i^4+324i^3+486i^2+324i+ \, \color{blue}{ \cancel{81}} \, \, \color{blue}{ -\cancel{81}} \, = 81i^4+324i^3+486i^2+324i $$ |
⑥ | $$ 81i^4 = 81 \cdot i^2 \cdot i^2 =
81 \cdot ( - 1) \cdot ( - 1) =
81 $$ |
⑦ | $$ 324i^3 = 324 \cdot \color{blue}{i^2} \cdot i =
324 \cdot ( \color{blue}{-1}) \cdot i =
-324 \cdot \, i $$ |
⑧ | $$ 486i^2 = 486 \cdot (-1) = -486 $$ |
⑨ | Combine like terms: $$ \color{blue}{81} \, \color{red}{ -\cancel{324i}} \, \color{blue}{-486} + \, \color{red}{ \cancel{324i}} \, = \color{blue}{-405} $$ |
⑩ | Write $ -405 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. $$ \begin{aligned} \frac{1}{4} \cdot -405 = \frac{1}{4} \cdot \frac{-405}{\color{red}{1}} = \frac{-405}{4} \end{aligned} $$ |