Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{2}z+\frac{1}{6}z& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(\frac{1}{2}+\frac{1}{6})z \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2}{3}z \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2z}{3}\end{aligned} $$ | |
① | Use the distributive property. |
② | Combine like terms |
③ | Step 1: Write $ z $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot z & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{z}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot z }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 2z }{ 3 } \end{aligned} $$ |