Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{2}x^2-\frac{1}{3}x^3+x^2-\frac{1}{4}x^3+14& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^2}{2}-\frac{x^3}{3}+x^2-\frac{x^3}{4}+14 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-2x^3+3x^2}{6}+x^2-\frac{x^3}{4}+14 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{-2x^3+9x^2}{6}-\frac{x^3}{4}+14 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{-7x^3+18x^2}{12}+14 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{-7x^3+18x^2+168}{12}\end{aligned} $$ | |
① | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 }{ 2 } \end{aligned} $$ |
② | Step 1: Write $ x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot x^3 & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{x^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^3 }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^3 }{ 3 } \end{aligned} $$ |
③ | Step 1: Write $ x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{4} \cdot x^3 & \xlongequal{\text{Step 1}} \frac{1}{4} \cdot \frac{x^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^3 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^3 }{ 4 } \end{aligned} $$ |
④ | To subtract raitonal expressions, both fractions must have the same denominator. |
⑤ | Step 1: Write $ x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{4} \cdot x^3 & \xlongequal{\text{Step 1}} \frac{1}{4} \cdot \frac{x^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^3 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^3 }{ 4 } \end{aligned} $$ |
⑥ | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑦ | Step 1: Write $ x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{4} \cdot x^3 & \xlongequal{\text{Step 1}} \frac{1}{4} \cdot \frac{x^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^3 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^3 }{ 4 } \end{aligned} $$ |
⑧ | To subtract raitonal expressions, both fractions must have the same denominator. |
⑨ | Step 1: Write $ 14 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |